Ninel Kokanyan
ninel.kokanyan [at] centralesupelec.fr
Résumé :
- Enseignant-Chercheur en Physique (sections CNU 28, 30 et 63)
- Déléguée à la Pédagocie (pôle des Programmes)
- Responsable de la filière 'Innovation et Intrapreneuriat' sur le campus de Metz
- Responsable de l'enseignement d'integration 'In-line measurements using wave engineering'
- Membre du Comité de Direction du campus de Metz
- Référent égalite femmes-hommes du campus de Metz
Mots clés :
- Niobate de Lithium, Spectroscopie Raman, Capteurs SAW (Surface Acoustic Wave), Capteurs optiques pour un suivi in-situ
Publications :
- Article in a review - 26 documents
- Ning Yang, Cédric Guerin, Ninel Kokanyan, Patrick Perré. In-line monitoring of bioreactor by Raman spectroscopy: Direct use of a standard-based model through cell-scattering correction, 2024-12-10. (https://centralesupelec.hal.science/hal-04749728v1)
- Ning Yang, Cédric Guerin, Ninel Kokanyan, Patrick Perré. Raman spectroscopy applied to online monitoring of a bioreactor: Tackling the limit of detection, 2024-01. (https://centralesupelec.hal.science/hal-04227441v1)
- Jordan Maufay, Baptiste Paulmier, Mélanie Emo, Ulrich Youbi, Esther Mbina, Thierry Aubert, Ninel Kokanyan, Sami Hage-Ali, Michel Vilasi, Omar Elmazria. Innovative NiAl Electrodes for Long-Term, Intermediate High-Temperature SAW Sensing Applications Using LiNbO 3 Substrates, 2023-08-01. (https://hal.univ-lorraine.fr/hal-04203561v1)
- B. Lavisse, Laurent Weiss, Ninel Kokanyan, André Lefebvre, Emerik Henrion, Olivier Sinot, Tidu Albert. Investigations of grinding burn on a nitrided steel, 2022-06-01. (https://hal.science/hal-03721578v1)
- Thierry Aubert, Ninel Kokanyan, Omar Elmazria. Langasite as Piezoelectric Substrate for Sensors in Harsh Environments: Investigation of Surface Degradation under High-Temperature Air Atmosphere, 2021-09-06. (https://hal.science/hal-03394418v1)
- Z. Raddaoui, Ninel Kokanyan, M.D. Fontana, S.E. Kossi, J. Dhahri. Raman scattering and fluorescent behaviors in Ba0.96Nd0.0267Ti(1-x)WxO3 (x = 0.00 and x = 0.05) ceramics, 2021-04. (https://hal.science/hal-03210792v1)
- A. Yeganyan, K. Hovhannesyan, Ninel Kokanyan, Michel Aillerie, E. Kokanyan. Graphene Thermal Conductivity at Room Temperatures and Its Relationship with Thermal Expansion, 2021-01. (https://hal.science/hal-03210795v1)
- Ninel Kokanyan, Nune Mkhitaryan, Gagik Demirkhanyan, Ajith Kumar, Michel Aillerie, Dhiraj Sardar, Edvard Kokanyan. LiNbO3-Tm3+ Crystal. Material for Optical Cooling, 2021. (https://hal.science/hal-03210788v1)
- Marc D. Fontana, Ninel Kokanyan, Thomas H Kauffmann. Sub-THz Raman response in BaTiO3 and link with structural phase transition, 2020-03-17. (https://hal.science/hal-02514778v1)
- Rodney Marcelo Do Nascimento, Adrien Baldit, Ninel Kokanyan, Lara Kristin Tappert, Paul Lipinski, Antonio Carlos Hernandes, Rachid Rahouadj. Mechanical-chemical coupling in Temporomandibular Joint disc, 2020-03. (https://hal.science/hal-02497206v1)
- Ninel Kokanyan, Marco Bazzan, Laura Vittadello, David Chapron, Edvard Kokanyan, Marc Fontana. Time evolution of Symmetry-forbidden Raman lines activated by photorefractivity, 2019-09. (https://hal.science/hal-02301461v1)
- A. Yeganyan, E. Kokanyan, Ninel Kokanyan, M. Aillerie, T. Aubert. Estimation of the Thermal Expansion Coefficient of Graphene in the Temperature Range of 100-700 degrees K, 2019-07. (https://hal.science/hal-02305202v1)
- Anush Danielyan, Ninel Kokanyan, Sergey Kostritskii, Edvard Kokanyan, Michel Aillerie. Composition dependence of the electro‐optic properties of iron‐doped lithium niobate crystals mounted as bulk modulator, 2019-04-11. (https://hal.science/hal-02429846v1)
- Jérémy Streque, Thierry Aubert, Ninel Kokanyan, Florian Bartoli, Amine Taguett, Vincent Polewczyk, Edvard Kokanyan, Sami Hage-Ali, Pascal Boulet, Omar Elmazria. Stoichiometric Lithium Niobate Crystals: Towards Identifiable Wireless Surface Acoustic Wave Sensors Operable up to 600 °C, 2019-04. (https://hal.science/hal-02114799v1)
- T.H. Kauffmann, Ninel Kokanyan, Marc D. Fontana. Use of Stokes and anti‐Stokes Raman scattering for new applications, 2019. (https://hal.science/hal-01930437v1)
- Narek Margaryan, Ninel Kokanyan, Edvard Kokanyan. Low- Temperature Synthesis and Characteristics of Fractal Graphene Layers, 2019. (https://hal.science/hal-01763912v1)
- Nune Mkhitaryan, Jean Zaraket, Ninel Kokanyan, Edvard Kokanyan, Michel Aillerie. Electro-optic properties of singly and doubly doped lithium niobate crystal by rare earth elements for optoelectronic and laser applications, 2019. (https://hal.science/hal-02138754v1)
- Sara Khamseh, Eiman Alibakhshi, Mohammad Mahdavian, Mohammad Reza Saeb, Henri Vahabi, Ninel Kokanyan, Pascal Laheurte. Magnetron-sputtered copper/diamond-like carbon composite thin films with super anti-corrosion properties, 2018-01. (https://hal.science/hal-02303835v1)
- Ninel Kokanyan, Marco Bazzan, D. Chapron, Marc D. Fontana. Photorefractive Lithium Niobate crystals: light polarisation rotation highlighted by transmission Raman spectroscopy, 2017-06. (https://hal.science/hal-01582077v1)
- Ninel Kokanyan, D. Chapron, Edvard Kokanyan, Marc D. Fontana. Zr doping on lithium niobate crystals: Raman spectroscopy and chemometrics, 2017-03-06. (https://hal.science/hal-01467226v1)
- Mustapha Abarkan, Anush Danielyan, Ninel Kokanyan, Michel Aillerie, Sergey M. Kostritskii, Edvard Kokanyan. The clamped and unclamped effective electro-optic coefficients of zirconium-doped congruent lithium niobate crystals, 2017. (https://hal.science/hal-01582082v1)
- Edvard Kokanyan, Anush Movsesyan, Marco Bazzan, Ira Ghambaryan, A. Yeganyan, Michel Aillerie, Ninel Kokanyan. HO-DOPED LITHIUM NIOBATE THIN FILMS. GROWTH AND PROPERTIES, 2017. (https://hal.science/hal-02429842v1)
- Ninel Kokanyan, Anush Movsesyan, I. Ghambaryan, Edvard Kokanyan. Growth and investigation of physical properties of holmium doped lithium niobate crystals, 2015. (https://hal.science/hal-01386616v1)
- Mustapha Abarkan, Michel Aillerie, Ninel Kokanyan, Clément Teyssandier, Edvard Kokanyan. Electro-optic and dielectric properties of Zirconium-doped congruent lithium-niobate crystals, 2014. (https://hal.science/hal-01467230v1)
- N. Kokanyan, D. Chapron, M.D. Fontana. Temperature dependence of Raman scattering and anharmonic properties in LiNbO3, 2014. (https://hal.science/hal-01002530v1)
- M Bazzan, Ninel Kokanyan, A Zaltron, N Argiolas, D. Chapron, M. D. Fontana. Raman frequency shift induced by photorefractive effect on Fe-doped lithium niobate, 2013. (https://hal.science/hal-01385633v1)
- POSTER - 3 documents
- Ning Yang, Cédric Guerin, Ninel Kokanyan, Patrick Perré. Improved online monitoring model of bioreactor by Raman spectroscopy, 2023-05-25. (https://centralesupelec.hal.science/hal-04433147v1)
- Ning Yang, Cédric Guerin, Rawdha Dekhili, Ninel Kokanyan, Patrick Perre. Raman in-situ monitoring by machine learning in bioproduction, 2023-02-09. (https://centralesupelec.hal.science/hal-04433133v1)
- Jordan Maufay, Thierry Aubert, Ninel Kokanyan, Cécile Floer, Sami Hage-Ali, Omar Elmazria. Investigation of the limit operating temperature of LiNbO3 as substrate for SAW devices, 2020-09-08. (https://hal.science/hal-03029837v1)
- Communication on a congress - 39 documents
- Ning Yang, Cédric Guerin, Ninel Kokanyan, Patrick Perre. Online monitoring of bioreactor based on Raman spectroscopy, 2022-08-29. (https://centralesupelec.hal.science/hal-04433097v1)
- Rabeb Belghouthi, Ninel Kokanyan, Michel Aillerie. Enhanced ZnO based solar cell efficiency by piezo-phototronic effect, 2020-06-25. (https://hal.univ-lorraine.fr/hal-03092718v1)
- Jean Zaraket, Ninel Kokanyan, Michel Aillerie, Chafic Salame. Analysis of defects of PV solar modules using deep level transient spectroscopy. Feasability and limits, 2020-06-25. (https://hal.univ-lorraine.fr/hal-03092712v1)
- Jean Zaraket, Ninel Kokanyan, Michel Aillerie, Chafic Salame. Evolution of PV solar modules parameters operating in extreme environments, 2020-06-25. (https://hal.univ-lorraine.fr/hal-03092715v1)
- Ninel Kokanyan, Anush Danielyan, Thierry Aubert, Narine Babajanyan, Michel Aillerie, Edvard Kokanyan. Iron-doped Lithium Niobate crystals studied by Raman spectroscopy, 2019-09-20. (https://hal.science/hal-02305198v1)
- Ninel Kokanyan, Marco Bazzan, Laura Vittadello, D. Chapron, Edvard Kokanyan, Marc Fontana. Symmetry forbidden Raman lines activated by photorefractivity, 2019-09-17. (https://hal.science/hal-02305195v1)
- Nune Mkhitaryan, Ninel Kokanyan, Gagik Demirkhanyan, Edvard Kokanyan. LiNbO3:Tm3+ crystal: Material for optical cooling, 2019-09. (https://hal.science/hal-02306691v1)
- Ninel Kokanyan, Florian Bartoli, Thierry Aubert, Omar Elmazria, Philippe Pigeat, Edvard Kokanyan, Michel Aillerie. ScAlN thin films studied by Raman spectroscopy, 2019-06-18. (https://hal.science/hal-02190315v1)
- Edvard Kokanyan, Atom Yeganyan, Ninel Kokanyan, Michel Aillerie, Thierry Aubert. Estimation of thermal expansion coefficient of graphene in the temperature range of 100-700K, 2019-06-18. (https://hal.science/hal-02190321v1)
- Ninel Kokanyan, Anush Danielyan, Michel Aillerie, Sergey M Kostritskii, Thierry Aubert, Narine Babajanian, Edvard Kokanyan. Photorefractive properties of lithium niobate crystals studied by Raman spectroscopy, 2019-05-31. (https://hal.science/hal-02190312v1)
- Victor Colas, Ninel Kokanyan, Cédric Guerin, Emilie Michiels, Thierry Aubert. Suivi en temps réel de la fermentation alcoolique par spectroscopie Raman, 2019-05-13. (https://hal.science/hal-02139584v1)
- Ninel Kokanyan, T.H. Kauffmann, Marc D. Fontana. Use of Raman Stokes and anti-Stokes scattering for new applications, 2019-05-13. (https://hal.science/hal-02139585v1)
- Naira Babajanyan, Ninel Kokanyan, Anush Danielyan, Michel Aillerie, Thierry Aubert, Edvard Kokanyan. Raman spectrometry characterization of iron doped different composition lithium niobate crystals, 2018-09-18. (https://hal.science/hal-01874971v1)
- Nune Mkhitaryan, Michel Aillerie, Ninel Kokanyan, Jean Zaraket, Naira Babajanyan, Edvard Kokanyan. Electro-optic properties of rare earth ions doped lithium niobate, 2018-09-18. (https://hal.science/hal-01874973v1)
- Anush Danielyan, Ninel Kokanyan, Sergey M Kostritskii, Michel Aillerie, Edvard Kokanyan. Composition dependence of the electro-optic properties of iron doped lithium niobate crystals, 2018-09-18. (https://hal.science/hal-01874970v1)
- Ninel Kokanyan, Naira Babajanyan, Anush Movsesyan, Marc D. Fontana, Edvard Kokanyan. Raman spectroscopy and luminescence of Ho-doped lithium niobate crystals, 2018-09-18. (https://hal.science/hal-01874972v1)
- Anush Movsesyan, Marco Bazzan, Ninel Kokanyan, Ira Ghambaryan, A. Yeganyan, A. Arzumanyan, Michel Aillerie, Edvard Kokanyan. Ho-doped lithium niobate thin films: creation and characterization, 2018-09. (https://hal.science/hal-01925752v1)
- Ninel Kokanyan, Edvard Kokanyan, Naira Babajanyan, T.H. Kauffmann, Marc D. Fontana. Luminescence of Ho-doped lithium niobate crystals highlighted by Raman Spectroscopy, 2018-08-19. (https://hal.science/hal-01863538v1)
- Ninel Kokanyan, Marco Bazzan, Edvard Kokanyan, D. Chapron, Marc D. Fontana. Breaking of Raman selection rules in photorefractive iron doped Lithium Niobate crystals, 2018-05-16. (https://hal.science/hal-01796615v1)
- Narek Margaryan, Ninel Kokanyan, Edvard Kokanyan. The AFM and Raman Study of Few Layer Graphene, 2017-12-04. (https://hal.science/hal-01760047v1)
- Thierry Aubert, Ninel Kokanyan, Hassan Alhousseini, Amine Taguett, Florian Bartoli, Jérémy Streque, Hamid M'Jahed, Pascal Boulet, Omar Elmazria. First investigations on stoichiometric lithium niobate as piezoelectric substrate for high-temperature surface acoustic waves applications, 2017-10-28. (https://hal.science/hal-01628825v1)
- Ninel Kokanyan, Marco Bazzan, D. Chapron, Marc D. Fontana. Photorefractive Lithium Niobate crystals: light polarisation rotation highlighted by transmission Raman spectroscopy, 2017-07-17. (https://hal.science/hal-01571579v1)
- M.D. Fontana, T.H. Kauffmann, Ninel Kokanyan. BaTiO3: Raman spectra, lattice dynamics and phase transitions, 2017-06-01. (https://centralesupelec.hal.science/hal-01744817v1)
- M.D. Fontana, Ninel Kokanyan, D. Chapron, P. Bourson. Lithium niobate, a ferroelectric and versatile material for optical applications: structure control and optimization, 2017-03-16. (https://centralesupelec.hal.science/hal-01520608v1)
- Anush Danielyan, Laura Vittadello, Michel Aillerie, Edvard Kokanyan, Ninel Kokanyan, Marco Bazzan, Sergey M. Kostritskii. Physical properties of iron doped LiNbO3 from sub-congruent to quasi-stoechiometric crystals, 2016-11-07. (https://hal.science/hal-01402221v1)
- Ninel Kokanyan, D. Chapron, Edvard Kokanyan, Marc D. Fontana. Effect of Zr doping on the structure of Lithium Niobate crystals: Site spectroscopy and Chemometrics, 2016-11-07. (https://hal.science/hal-01394285v1)
- Michel Aillerie, Edvard Kokanyan, Anush Movsesyan, Anush Danielyan, Ninel Kokanyan, Mustapha Abarkan, Farid Abdi. Recent advances in Electro-optic and their link with the photorefractive properties of doped congruent lithium-niobate crystals, 2016-11-07. (https://hal.science/hal-01402216v1)
- M.D. Fontana, N. Kokanyan, D. Chapron, P. Bourson. Lithium niobate, a versatile material for many applications in optoelectronics: recent developments, 2015-09-09. (https://centralesupelec.hal.science/hal-01227838v1)
- M.D. Fontana, N. Kokanyan, D. Chapron, P. Bourson. Investigation by Raman micro-probe of local structural changes in various LiNbO3 devices, 2015-06-29. (https://centralesupelec.hal.science/hal-01227828v1)
- M.D. Fontana, N. Kokanyan, D. Chapron, A. Zaltron, N. Argiolas, M. Bazzan. Photorefractive properties probed by Raman spectroscopy in ferroelectric materials, 2014-07-07. (https://hal.science/hal-01227825v1)
- M. Bazzan, N. Kokanyan, A. Zaltron, N. Argiolas, D. Chapron, L. Guilbert, M.D. Fontana. Temperature dependence of photorefractive phenomena in lithium niobate and its polaron-based interpretation, 2013-09-18. (https://hal.science/hal-00866719v1)
- N. Kokanyan, D. Chapron, M.D. Fontana. Temperature dependence and anharmonic behaviour of optical phonons in LiNbO3, 2013-09-18. (https://hal.science/hal-00866720v1)
- M. Bazzan, N. Kokanyan, A. Zaltron, N. Argiolas, D. Chapron, M.D. Fontana. Time - dependent shift of the Raman frequencies induced by photorefractive effect in Fe - doped Lithium Niobate, 2013-09-04. (https://hal.science/hal-00866725v1)
- N. Kokanyan, D. Chapron, M.D. Fontana. Thermal behavior of optical phonons in Lithium Niobate, 2013-09-02. (https://hal.science/hal-00866724v1)
- N. Kokanyan, M.D. Fontana, D. Chapron, M. Bazzan. Time-Dependent shift of the Raman frequency induced by photorefractive effect of Fe-doped Lithium Niobate, 2013-06-10. (https://hal.science/hal-00866709v1)
- Edvard Kokanyan, M.D. Fontana, Michel Aillerie, Ninel Kokanyan. Growth and properties of Zr-doped periodically poled lithium niobate crystals, 2012-06-24. (https://hal.science/hal-01248639v1)
- M.D. Fontana, N. Kokanyan, D. Chapron, M. Bazzan, E. Kokanyan. SIte Raman spectroscopy of dopant ions in LiNbO3, 2012-06-24. (https://hal.science/hal-00728940v1)
- Ninel Kokanyan, Edvard Kokanyan, V. Degiorgio, P. Minzioni, I. Cristiani. Photorefractive effect in doped lithium niobate cryststals: Dependence on the light intensity, 2007. (https://hal.science/hal-01386796v1)
- Ninel Kokanyan, E. Kokanyan, V. Degiorgio, I. Cristiani, Zh. Akopyan, J. Gruber, D Sardar. Growth and properties of hafnium doped single-domain and periodically poled lithium niobate crystals, 2006. (https://hal.science/hal-01386821v1)
- PATENT - 1 document
- Patrick Perre, Ninel Kokanyan, Cédric Guerin, Mahamadou Mounkaila, Emilie Michiels, Victor Pozzobon. Installation de détection d'au moins un paramètre caractéristique d'un milieu et procédé de détection d'au moins un tel paramètre caractéristique, 2021-05-04. (https://hal.science/hal-04464969v1)
- Work chapter - 1 document
- Patrice Bourson, Guilhem Simon, D. Chapron, Ninel Kokanyan, Philippe Colomban. Spectroscopie et spectrométrie Raman, 2020-11-30. (https://hal.univ-lorraine.fr/hal-03218611v1)
- Dissertation - 1 document
- Ninel Kokanyan. Study of photo-electrostrictive effects in photorefractive LiNbO3 probed by polarized Raman spectroscopy, 2015-01-30. (https://hal.science/tel-01386808v2)